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Abstract  

Current initiatives to store carbon in soils as a measure to mitigate climate change are gaining 

momentum. Agriculture plays an important role in soil carbon initiatives, as almost 40% of 

the world’s soils are currently used as cropland and grassland. Thus, a major research and 

policy question is how different agricultural management practices affect soil carbon 

sequestration. This working paper focuses on the impact of mineral fertiliser use on soil 

carbon sequestration, including synergies with the use of organic inputs (for example crop 

residues, animal manure) and trade-offs with greenhouse gas (GHG) emissions. Findings 

from scientific literature show that fertiliser use contributes to soil carbon sequestration in 

agriculture by increasing biomass production and by improving carbon:nitrogen (C:N) ratios  

of residues returned to the field. The use of mineral fertiliser can also support the maintenance 

of carbon stocks in non-agricultural land if improved fertility on agricultural land reduces 

demand for land conversion. Combining organic inputs with mineral fertiliser seems most 

promising to sequester carbon in agricultural soils. Increasing nutrient inputs (either organic 

or mineral fertilisers) may however lead to trade-offs with GHG emissions such as N2O. 

Improving the agronomic nitrogen use efficiency of nutrient inputs (i.e., additional grain yield 

per kg N applied) can alleviate this trade-off. While soil carbon sequestration can benefit soil 

fertility under some conditions and compensate for some GHG emissions related to 

agriculture (first assessments indicate up to 25% of the emissions related to crop production, 

depending on region and cropping system), it seems unlikely it can compensate for GHG 

emissions from other economic sectors. If soil carbon sequestration is a policy objective, 

priorities should be areas with higher storage potential (wetter and colder climates) and/or 

regions where synergies with soil fertility and food security are likely to occur (for example 

farming systems in tropical regions, on sandy soils and/or when cultivating more specialized 

crops). However, regions with the highest storage potential most likely do not overlap with 

regions where the largest benefits for soil fertility and food security occur. 
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Introduction 

Historical context of soil carbon sequestration as a policy objective 

Since the Intergovernmental Panel on Climate Change (IPCC) was established by the United 

Nations Environment Programme (UNEP) and the World Meteorological Organization 

(WMO) in 1988, soil carbon sequestration in agriculture and nature has been included under 

climate change mitigation. In the first IPCC assessment report (Melillo et al. 1990), scientists 

did not think that soil carbon could be sequestered in agriculture through human intervention, 

and soil carbon sequestration therefore was not listed as a potential measure. Rather, it was 

considered a positive unintended effect of the increased use of mineral fertilisers in the 

Northern hemisphere. This was summarized as: “this increased nitrogen availability may 

result in net carbon storage in plants and soils” (Melillo et al. 1990).  

This view changed by 1992, when an assessment of the potential of different management 

options to increase soil carbon in agricultural soils was proposed, to include reduced or no-till 

practices, cover crops, green manures and animal manure, and reducing fallow land (Barnwell 

et al. 1992). Soon after, it was understood that storing carbon in soils is only a temporary 

measure for mitigating climate change, as there are limits to how much carbon can be stored 

in soils, and that the change in management needs to be permanent in order not to reverse the 

carbon flux (Ingram and Fernandes 2001). Rattan Lal (2001) explained the role of soil carbon 

sequestration in climate change mitigation in a keynote speech in the same year: “The 

potential of C sequestration… is finite and can be filled within 25 to 50 years. The long-term 

solution to the risk of potential global warming lies in finding alternatives to fossil fuel. 

Therefore, the strategy of soil C sequestration is a bridge to the future”.  

Soil carbon and soil fertility 

Organic carbon in soils is the main element of soil organic matter (SOM); thus, increasing soil 

carbon is equivalent to increasing SOM. SOM is composed of plant, microbial and animal 

debris in various stages of decomposition and includes the living organisms in the soil (Oades 

1988). SOM is an important indicator of soil fertility, as it improves soil structure and nutrient 

supply for crop growth. The specific contribution of SOM to crop growth depends on the 

farming system (van Noordwijk et al. 1997). In general, crops cultivated in more intensively 

managed farming systems (with more use of fertiliser, irrigation and tillage options) depend 

less on SOM for soil fertility. Yet, even intensively managed farming systems can benefit 



from adding organic matter inputs, especially on sandy soils or when cultivating specialized 

crops such as potatoes or sugar beets (Hijbeek et al. 2017). 

Extensive soil analyses of long-term arable farming across five Canadian Prairie sites showed 

that “…management for optimum soil fertility may not produce the highest C sequestration” 

(Paul et al. 2004). A study in the Midwest United States, however, showed that most soil 

carbon was gained at agronomic nitrogen rates optimal for yields (Poffenbarger et al. 2017). 

These contrasting findings indicate that in some cases farmers might need financial support to 

increase soil carbon stocks as synergies between soil fertility and soil carbon sequestration do 

not always occur. In the tropics, there might be relatively more soil fertility and yield benefits 

from increasing SOM (Vanlauwe et al. 2011, Hijbeek et al. 2018). However, in the tropics, 

higher temperature leads to faster decomposition of SOM, thereby reducing the potential for 

carbon sequestration and limiting the scope of this win-win situation. 

Objective of this paper 

Despite the stated limitations, efforts to store carbon in agricultural soils can contribute to 

climate change mitigation, especially in situations with 1) high potential for storage (for 

example colder and wetter climates); 2) soils with high risks of losing much carbon (for 

example peat soils); and 3) cases in which increased carbon sequestration are tied with 

improving soil fertility. Different management practices can be used to sequester carbon in 

agricultural soils, including cultivating green manures, reducing fallow land or following 

reduced or no-tillage regimes, although the effects of the latter remain unclear (Baker et al. 

2007, Luo et al. 2010).  

In this review, we focus on examining the effect of mineral fertiliser use on soil carbon 

sequestration in agriculture. We examine potential relations between fertiliser use and climate 

change mitigation in Section 2; the effect of mineral fertiliser use on soil carbon sequestration 

in Section 3; trade-offs with GHG emissions in Section 4; and conclusions, limitations and 

opportunities in Section 5.   



 

Relations between fertiliser use and climate change 

mitigation  

At first sight, one might think that the more mineral fertiliser is used, the higher the GHG 

emissions will be, as each kg of nitrogen (N) applied results in an estimated 0.01 kg of direct 

N2O emissions (De Klein et al. 2006), although exact magnitudes of N2O emissions can vary 

widely by location (Rochette et al. 2008). In addition, each kg of fertiliser produced causes 

CO2 emissions, depending on the production process. Estimated rates are 0.8-1.3 kg CO2 

emissions per kg NPK in Europe and 0.9-3.0 kg CO2 emissions per kg urea in China (Zhang 

et al. 2013, Stork and Bourgault 2015). These processes have been well documented, and 

related emission factors are included in IPCC reporting guidelines (Eggleston et al. 2006) and 

are under review. 

Focus on these emission factors has led some to argue in favour of agricultural systems 

without mineral fertilisers, such as regenerative agriculture (Hawken 2017). Regenerative 

agriculture aims to sustain soil health by using a combination of no tillage, diverse cover 

crops, multiple crop rotations and in-farm fertility (in which no nutrients are imported from 

outside of the farm). While some aspects of regenerative agriculture (such as diverse cover 

crops and multiple crop rotations) can increase soil carbon and benefit crop yields under 

specific conditions - especially true for places with degraded soils - crops still need nutrient 

inputs to sustain yields.  

In agriculture, there is an inherent loss of nutrients from a farm or field by both exporting the 

edible part or other products from the field and leaching and gaseous emissions. This loss 

needs to be replaced if yields are to be maintained and soil mining to be prevented. Mineral 

fertilisers can replace these exported or lost nutrients. Without the use of mineral fertiliser, 

there would not be sufficient nutrients globally to meet current and growing food demands 

(Dawson and Hilton 2011), especially considering current production and distribution systems 

and without full recycling of nutrients from waste streams. In addition, supplying nutrients by 

other means than mineral fertilisers does not necessarily result in less GHG emissions. For 

example, direct N2O emissions from animal manure are similar to mineral fertiliser per kg of 

N applied (De Klein et al. 2006). 

To avoid mining of soil nutrients, nutrients lost during fertilizer application or exported from 

the field as produce need to be replaced with either mineral and/or organic fertiliser. Ten 



Berge et al. (2019) defined the minimum amount of nutrients needed to meet a certain target 

yield to minimize losses as much as possible. Estimates for sub-Saharan Africa can be found 

at www.yieldgap.org. Assuming a certain food demand, applying less than the optimal 

amount of nutrients may result in either farmers expanding agricultural area to meet food 

demands or increasing food insecurity. Neither is a desirable alternative.  

The discussion above shows that from a systems perspective, the relation between fertiliser 

use and climate change is more complex than only the emission factors related to production 

and application. Reducing production or application of fertiliser might seem a logical way to 

decrease GHG emissions, but if yields decrease as a result then such reductions may have 

unintended and undesirable consequences including deforestation or food insecurity (Burney 

et al. 2010). On the contrary, when use of mineral fertilisers leads to increased yields, more 

biomass becomes available to increase carbon in agricultural soils (Han et al. 2018). As 

described here, indirect effects of fertiliser use include positive effects on carbon stored in 

soils, forests and grasslands either through increased productivity or avoided area expansion.  

Figure 1 displays the different relations between mineral fertiliser use and climate change 

mitigation and highlights uncertainties and feedbacks. Arrows 1 and 2 indicate CO2 and N2O 

emissions related to mineral fertiliser production and application. Arrow 3 indicates increases 

in yields due to nutrient supply from either mineral fertilisers or organic inputs. This is 

simplified, as in practice different types of mineral fertilisers (urea, NPK) will have different 

yield effects. Similarly, a range of organic inputs exist, some relatively nutrient-rich (manures 

or slurries) and others relatively carbon-rich (compost) with differing effects on crop yields 

and soil carbon sequestration.    

 

 

http://www.yieldgap.org/


 

 

Figure 1. Simplified diagram showing the different relations between mineral fertiliser 

use and climate change mitigation. Solid lines indicate effects with high certainty. 

Dashed lines indicate indirect effects with less certainty that require more research.  

1. Energy requirements 

2. Losses during application 

3. Nutrient supply 

4. Potentially less agricultural land expansion  

5. Increased availability of biomass  

6. Improving C:N ratios  

7. Potentially increased nutrient use efficiency or increased attainable yields (additional 

yield effects)  

8. Potentially more decomposition 

Considering equal demands for agricultural produce (food as well as feed, fibre and fuels), 

increased yields can lead to less expansion of agricultural land into forest or savannah areas 

(arrow 4). This relation is uncertain and difficult to quantify, as it depends on enforcement of 

policies prohibiting or controlling deforestation when agriculture intensifies. In 2007, global 

forests stored approximately 479 + 37 Pg C in above- and below-ground biomass, litter and 

deadwood (Pan et al. 2011). In addition, forest soils contained about  383 ± 30 Pg C in the 

upper meter of soil (id), which could partially be lost if converted to agriculture. In total, the 

carbon stored in forests (862 Pg C) in 2011 was similar to the total carbon in the atmosphere 

(829 Pg C) (Ciais et al. 2013).  

Increased yields lead to increased availability of biomass, which can be returned to the field 

and – with the appropriate C:N ratios – sequester carbon in soils (arrows 5 and 6). Increasing 



soil carbon in agricultural soils may create a positive feedback loop with yields in cases where 

nutrient use efficiency or attainable yields are increased (arrow 7). However, increasing soil 

carbon  may also lead to increases in (indirect) N2O emissions in the long-term (arrow 8), as 

each year more SOM decomposes, and associated nutrients released are not necessarily taken 

up by the crop. 

Increasing the agronomic nutrient use efficiency from either mineral or organic fertilisers 

(defined as the kg additional yield per kg nutrient applied) is central to climate change 

mitigation, as it means fewer nutrient losses and thus less N2O emissions (Powlson et al. 

2018). Especially under tropical conditions, the agronomic nitrogen use efficiency of mineral 

fertilisers can be increased when applied in combination with organic fertilisers, such as 

farmyard manure (Vanlauwe et al. 2011). Agronomic nitrogen use efficiency can also be 

increased through improved agronomic management practices such as weed and pest control, 

using lime on acid soils, optimizing rate, timing and placement of fertilisers or using 

nitrification inhibitors. 

While the magnitude and processes of relations 1 and 2 (GHG emissions from production and 

application of mineral fertilizer) are relatively well-known, the magnitudes and processes 

involved in relations 3 to 8 are less well understood. In the following section, the existing 

scientific literature is reviewed to gain insight into the relationship between mineral fertiliser 

use and soil carbon sequestration.   

Mineral fertiliser use and soil carbon sequestration 

The stock of carbon in a given soil depends on 1) the annual amount of carbon inputs 

(biomass added to the soil each year) together with the rate at which the carbon inputs are 

transformed into SOM (composition rate) and 2) the amount of SOM which is decomposed 

each year (decomposition rates). Composition and decomposition rates mainly depend on 

biophysical factors (soil texture, climate), while the amounts and types of biomass added to 

the soil each year largely depend on land use (types of crops or vegetation) and management 

(e.g. weed and pest control, irrigation, fertiliser use). Colder and wetter climates slow down 

decomposition rates (Gonçalves and Carlyle 1994, Verheijen et al. 2005) while soils with 

more clay particles have, on average, a higher potential to store carbon (Reeves 1997, 

Körschens et al. 1998).  



 

As such, the carbon stock of a soil depends on biophysical factors, land use and management. 

Of these, only land use and management can be altered on a human time scale. A given 

change in land use or management will slowly lead to a new soil carbon stock equilibrium (a 

new equilibrium between carbon inputs and outputs). When the new equilibrium is reached, 

no additional carbon is stored or lost unless land use or management is changed again. Any 

measure to sequester soil carbon is therefore time-bound. Annual increases in soil carbon only 

take place in the initial years after changes in land use or management, and until a new soil 

carbon equilibrium is reached.  

Fertiliser use can increase soil carbon stocks by 1) increasing the amount of annual carbon 

inputs (crop residues) due to more biomass from higher yields; and 2) improvement of 

stoichiometric relations of crop residues returned to the soil, thereby increasing the formation 

rates of SOM. The first mechanism includes cases in which mineral fertiliser increases crop 

yields and availability of organic residues increases, which can increase soil carbon stocks if 

returned to the soil directly, after composting or as animal manure. The second mechanism 

may require more explanation. Here, stoichiometric relations refer mainly to the ratios 

between C and N in crop residues and soil. In straw, for example, the C:N ratio is around 70 

(Lal 1995), while SOM typically has a C:N ratio of 12 (Batjes 1996). This means that to 

sequester carbon from straw in the soil; additional N is needed (van Groenigen et al. 2017). 

Using a modelling approach Lugato et al. (2018) showed that more carbon is sequestered in 

soils when using residues from N-fixing cover crops with a lower C:N ratio (more similar to 

the C:N ratio of SOM) than when using crop residues with a higher C:N ratio. In the latter 

case, using mineral fertiliser can add N to the soil and enhance soil carbon sequestration 

(Kirkby et al. 2016). 

Actual impacts of mineral fertiliser on soil carbon can be assessed by analysing long-term 

trends from national survey data or by analysing data from long-term field experiments. Two 

recent meta-analyses based on 64 and 114 field experiments across the world found that SOM 

content was on average 8.5% and 8% higher in the topsoil of fields with mineral fertiliser 

application compared to unfertilized plots (Ladha et al. 2011, Geisseler and Scow 2014). In 

the large majority of these studies, soil was sampled between 0 and 15-30 cm, though 

sampling depth varied. Similarly, using soil surveys in China, Gao et al. (2018) found that 

long-term increases in soil carbon were associated with improved agronomic management, 

including increased fertiliser use. 



To assess which combinations of nutrient inputs (mineral fertiliser, organic inputs or a 

combination of both) contribute most to soil carbon sequestration, more in-depth analyses of 

long-term experiments is helpful. In the interpretation of results of such experiments, the 

initial SOM content is an important aspect to consider. When an experiment is set up on a 

field with previous grass or forest, the SOM content will decrease in all treatments, but a more 

optimal combination of nutrient inputs will lead to a smaller reduction in the soil carbon 

stock. Alternatively, if the SOM content at the start of an experiment is relatively low, 

particular combinations of nutrient management might be able to increase soil carbon stocks. 

A long-term experiment in Muencheberg, Germany shows that after 41 years the carbon 

stocks of the soils were higher when organic inputs were combined with mineral fertiliser, 

compared to only organic inputs or only mineral fertiliser (Figure 2). This is most visible in 

the treatment with a yearly addition of 4 t/ha straw alone. Adding straw for 41 years did not 

lead to a different carbon stock compared to the control treatment. However, a combination of 

the same amount of straw application with NPK mineral fertiliser did lead to an increase in 

carbon stock. 

 

Figure 2. Percentage soil organic carbon in the upper 25 cm after 41 years of different 

nutrient management combinations at the long-term experiment in Muencheberg, 

Germany (Data: personal communication Dietmar Barkusky, ZALF). FYM = farmyard 

manure. SOC = soil organic carbon. 

A long-term experiment in Bet Dagan, Israel shows similar results. After 30 years, soil carbon 

stocks were higher when organic inputs were combined with mineral fertiliser, compared to 



 

only organic inputs or only mineral fertiliser (Figure 3), of which the difference can only 

partially be explained by the additional nutrients applied.  

 

Figure 3. Percentage of soil organic nitrogen in the upper 20 cm after 30 years of 

different nutrient management combinations at the long-term experiment in Bet Dagan, 

Israel. SON = soil organic nitrogen. In the long-term, soil organic nitrogen has a fixed 

ratio of 1:12 with soil organic carbon and can therefore be used as an indicator for soil 

organic carbon. Based on Bar-Yosef and Kafkafi (2016) 

Soil carbon sequestration and greenhouse gas emissions 

As described in the previous section, carbon can be sequestered by using mineral fertilisers, 

organic inputs or a combination of both. However, soil carbon does not exist in solitude, and 

it is not a stable compound in the soil. Soil carbon is part of SOM, which decomposes over 

time, releasing CO2 and N2O, which might negate the benefits for climate change mitigation. 

The previously mentioned modelling study by Lugato et al. (2018) found that incorporation of 

residues from N-fixing cover crops (with a lower C:N ratio) increased soil carbon 

sequestration, the associated increased N2O emissions outweighed the mitigation potential.  

A model-based study in the Netherlands resulted in similar findings (Bos et al. 2017). Soil 

carbon increased by using solely mineral fertiliser, and more so by combining mineral 

fertiliser with slurry or compost, but at a certain point (depending on fertilisation and yield 

level) associated N2O emissions outweighed climate change mitigation from carbon 

sequestration (Figure 4). 



 

Figure 4. Trade-off between soil carbon sequestration and N2O emissions from a 

modelling study in the Netherlands (Bos et al. 2017). Each coloured line represents a 

range of nutrient input levels (from low to high) for a given nutrient input type. The 

dotted line indicates the break even line where the gain in soil carbon sequestered 

equals the additional N2O emissions. 

The modelling study in the Netherlands only assessed trade-offs at field level. The additional 

GHG emissions associated with fertiliser production and transport (CO2) and/or GHG 

emissions associated with storage and transport of manure were not included. These findings 

raise the question of how far soil carbon sequestration can compensate for GHG emissions in 

agriculture when looking at the farm or regional level. Can soil carbon sequestration be used 

as a negative emission technology to achieve carbon neutral agriculture?  

A recent study in China showed that  - across a range of different cropping systems – soil 

carbon sequestration compensated for less than 10% of the total GHG emissions (N2O, CH4, 

CO2) associated with these cropping systems (Figure 5 Gao et al. 2018). Powlson et al. (2011) 

reported similar outcomes using data from the Broadbalk experiment in the UK. They found 

that soil carbon was increased by mineral fertiliser use, but that associated GHG emissions of 

all cropping management aspects (tillage, fertilisers, irrigation, crop protection, etc.) were 

four-fold higher. Interestingly, across the Chinese cropping systems investigated, N2O 

emissions were of the same order of magnitude as CO2  emissions (Figure 5), corresponding 

very well with the modelling study for the Netherlands (Figure 4).    



 

 

Figure 5. Soil carbon sequestration (negative, dark green part) relative to total GHG 

emissions of different cropping systems in China. WMN = winter wheat- summer maize 

Northern China; WMSW = winter wheat- summer maize South-western China; RW = rice-

winter wheat; RR = rice-rapeseed; DR = double rice; SRNE = single rice North-eastern 

China; SRENE = single rice; SB = soybeans; MNE = single spring maize North-eastern 

China; MNW = single spring maize Northern and North-western China; GV = greenhouse 

vegetables; OV = open-field vegetables; PS = potato system; CS = cotton system; OS = 

orchard system. Source: Gao et al. (2018) 

These findings show that while soil carbon sequestration might have a role to play in 

mitigating climate change, it cannot compensate for total agricultural GHG emissions, neither 

in the short or long-term, and it cannot compensate for GHG emissions from other economic 

sectors. In this light, it is also relevant to highlight that agronomic management has to be 

changed permanently to maintain a new soil carbon equilibrium, while the contribution to 

climate change mitigation only occurs in the first decades when the soil carbon stock is 

increasing. This means that when the new soil carbon equilibrium is reached, the changes in 

agronomic management have to be maintained while no additional carbon will be sequestered. 

Reducing N2O emissions on the other hand – by increasing nutrient use efficiency – also 

requires a shift in agronomic management but gives a contribution to climate change 

mitigation every year that the shift in management is maintained. 



Conclusion/recommendations  

Evidence from scientific literature shows that use of mineral fertiliser can support carbon 

sequestration in agricultural soils. Pathways include increasing the availability of biomass 

(e.g., crop residues) and creating more favourable C:N ratios for the formation of SOM. 

Nevertheless, carbon sequestration in agricultural soils is only temporary and not sufficient to 

offset all GHG emissions from the agricultural sector. If given priority, efforts should focus 

on sequestering carbon in agricultural soils with the largest sequestration potential and/or 

cases where synergies with soil fertility and food security occur. These focus areas might 

however not overlap geographically, as the largest potential for carbon sequestration will be 

most likely be in colder and temperate regions while the largest soil fertility benefits are likely 

to occur in tropical regions. Today, there is a lack of data on soil carbon sequestration in the 

tropics, which is also a limitation for this review. This can be read as a case for more long-

term field experiments in tropical regions which include regular soil analyses.  

Fertiliser use, yields and soil conditions vary enormously among geographies and cropping 

systems. Recommendations on fertiliser use and climate change mitigation need to account 

for these differences. Generally, fertiliser use and crop yields tend to be lower in developing 

countries, especially in most African countries (FAO 2019). Here, given adequate production 

potential (Van Ittersum et al. 2016, Ten Berge et al. 2019), increasing nutrient inputs can 

increase the availability of biomass that can be returned to the fields to sequester carbon, 

creating a positive feedback loop between soils and crops. In other regions, fertiliser use is 

already high. In these regions, increasing the nutrient use efficiency and thereby reducing N2O 

emissions is likely the most promising pathway to mitigate climate change. 

When analysing the potential benefit of mineral fertiliser use and soil carbon sequestration, 

the scale of assessment (field, farm, region) is crucial. In principle, sequestering carbon in 

agricultural soils can have mutual benefits for climate change mitigation and food security if 

soil fertility is improved, if there is an addition of carbon sequestered and if increased GHG 

emissions do not offset the added carbon. At the field level, increasing the nutrient use 

efficiency of either mineral or organic fertilisers can support the latter. Considering the 

limited availability of biomass in some areas, mineral fertiliser can play an important role in 

soil carbon sequestration by supplying nutrients to crops and thereby increasing biomass 

production and availability and limiting agricultural area expansion. Experimental evidence 

suggests that using a combination of both mineral fertiliser and organic fertiliser seems most 



 

promising for increasing crop yields, increasing nutrient use efficiency and sequestering soil 

carbon. 
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